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FeCl3 in combination with t-BuOOt-Bu as an oxidant was
found to catalyze oxidative coupling of alkylamines with arenes,
nitroalkanes, and 1,3-dicarbonyl compounds to give arylmethyl-
amines, ¢-nitroalkylamines, and 2-(aminomethyl)-1,3-dicarbon-
yl compounds, respectively.

A sequence consisting of oxidation of a CH bond adjacent
to a nitrogen atom and substitution reaction of the resulting
oxidation product with a carbon nucleophile is useful for
introduction of carbon substituents into nitrogen-containing
compounds. From operational simplicity, methods of conducting
the sequence in one batch have recently attracted attention. In
this context, we have reported that a combination of FeCl3
and t-BuOOt-Bu as a catalyst and an oxidant, respectively, is
effective for oxidative coupling of alkylamides with arenes,
where FeCl3 works efficiently in both the oxidation and
electrophilic aromatic substitution (SEAr) steps (Scheme 1).1

In contrast to the fact that only a few examples are available for
alkylamides,2,3 more readily oxidizable alkylamines have been
used for oxidative couplings with heteroarenes,4 nitroalkanes,5

and 1,3-dicarbonyl compounds.6,7 However, a single oxidation
system applicable to a wide range of nucleophiles has not been
reported. Here we report that the FeCl3t-BuOOt-Bu system is
effective for oxidative coupling of alkylamines with arenes,
nitroalkanes, and 1,3-dicarbonyl compounds.

The reaction of N-methylindole (1a: 1 equiv) with 2-phenyl-
1,2,3,4-tetrahydroisoquinoline (2a: 4 equiv) using FeCl3 (10
mol%) and t-BuOOt-Bu (2 equiv) in 1,2-dichloroethane (DCE)
at 80 °C for 9 h gave 1-(1-methyl-3-indolyl)-2-phenyl-1,2,3,4-
tetrahydroisoquinoline (3a) in 95% yield (Entry 1 of Table 1).8

Saturated alkylamines also underwent the oxidative coupling
with 1a, though a higher temperature (110 °C) was required
(Entries 2 and 3). To the best of our knowledge, there have been
no reports that amines having no unsaturated bonds are used for
oxidative coupling with arenes. The coupling proceeded also
with N,N-dimethylbenzylamine (2d) (Entry 4). Amines having
methyl groups on the nitrogen atom were arylated selectively
on the methyl group. The present iron-catalyzed reaction is
applicable to a benzene derivative (Entries 5 and 6), contrasting
with the previous methods.4,9 The yields were higher by use of
FeCl2 instead of FeCl3 in these cases.

Addition of N-methylindole (1a) to a reaction mixture of
tetrahydroisoquinoline 2a, FeCl3, and t-BuOOt-Bu after full
consumption of t-BuOOt-Bu gave 71% of coupling product 3a
(Scheme 2).15 Although we were not able to identify any
intermediates derived from oxidation of 2a, the result shows that
the present oxidative coupling consists of oxidation of alkyl-
amines and SEAr with the oxidized intermediate as is the case
with alkylamides shown in Scheme 1. A higher yield observed

Scheme 1.

Table 1. Oxidative coupling of alkylamines with arenesa

1 Cond.a Time/hEntry 2 Product

1a

1a

1a

1a

1b

1b

A

B

B

C

D

D 30

48

2

8

2

91

2

3

4

5

6

2a

2b

2c

2d

2e

2f

95

70

52

63

74

78

Yield/%

aThe reaction was carried out in a solvent (1.0mL) under a
nitrogen atmosphere using an arene 1 (0.25mmol), an amine 2,
and t-BuOOt-Bu in the presence of FeCl3 (0.025mmol).
Conditions (solvent, temperature, 1/2/t-BuOOt-Bu) are as
follows. A: 1,2-dichloroethane, 80 °C, 1/4/2. B: 1,2-dichloro-
2-methylpropane, 110 °C, 1/6/3. C: DMSO, 80 °C, 1/5/2.
D: DMSO, 80 °C, 1/6/3; use of FeCl2 instead of FeCl3.15
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in the tandem reaction offers an advantage over the sequential
additions in utilization of unstable intermediates.

The combination of FeCl3 with t-BuOOt-Bu was effective
for the coupling of tetrahydroisoquinoline 2a with nitroalkanes 4
(Scheme 3).15 The reaction of 2a with dimethyl malonate (6a)
gave 1-alkylated isoquinoline 7a (Scheme 4).15 To our surprise,
the regiochemistry was completely changed by use of malono-
nitrile (6b) as a nucleophile to give 3-alkylated product 8b as the
exclusive isomer. A reaction mixture of 2a and 6b quenched
at 1 h, before full consumption of 6b, contained 1-alkylated
product 7b in addition to 8b,10 showing that the malononitrile
moiety shifts from 1-position to 3 under the reaction conditions.
The same 3-selectivity was observed with methyl 2-cyanoacetate
(6c) to give 8c.

As shown in Scheme 5, the reaction of 7a (1 equiv) with 6b
(2 equiv) at 80 °C for 1.5 h gave a mixture of isoquinolines
having CH(CN)2 at 1-position (7b: 12%) and 3-position (8b:
84%), whereas only 8b was observed after 24 h.11,12,15 Iminium
salt A in Scheme 6 should be an intermediate in the trans-
formation of 7a to 7b. Although it is unclear why the 1,3-shift is
operative with dicyanomethyl but not with bis(methoxycarbon-
yl)methyl, we assume participation of azomethine ylide B as an
intermediate.13 Deprotonation from 6b by B and the following
nucleophilic addition to C gives 8b.14

In conclusion, we have disclosed that FeCl3 in combination
with a stoichiometric amount of t-BuOOt-Bu catalyzes oxidative
coupling of amines with various nucleophiles to give amino-
methylarenes, ¢-aminonitroalkanes, and 2-(aminomethyl)-1,3-
dicarbonyl compounds.

This paper is in celebration of the 2010 Nobel Prize
awarded to Professors Richard F. Heck, Akira Suzuki, and
Ei-ichi Negishi.
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